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The authors of paper [1] investigated the instability of the surface 

separating a heavy electrically conducting fluid from a lighter non- 
conducting fluid situated above it in the strong electric field of a plane 
electrode. It was shown that the electrically conducting fluid formed 
a circuit with the electrode as the result of the development of surface 

In this region U is represented as 

U~ I r Io (Lr) Ko (LR) - -  Io (LR) Ko (;~r) 
U = "i'ff"k- l n a  m 

m = Io (~a) Ko (~R) - -  Io (XR)/G (~,a). 
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instability. In this paper we apply the mathematical methods and 
results of [lJ to an investigation of vortex stabilization of a plasma 
filament in a radial electric field. Formulas are obtained for calcula- 
tion of the minimum velocity of rotation of the medium necessary for 
stabilization of the filament as well as of the critical potential for 
which the filament surface becomes unstable (hydrodynamic instability 
which is not connected with the electric field is not treated or taken 
into account), h is shown that under specific conditions this critical 
potential is considerably lower than the avalanche-breakdown poten- 
tial and that the mechanism by which the plasma forms a circuit with 
the electrode can play an important part in vortex stabilization. 

Statement of the problem. Let a long plasma filament of radius R 1 
be situated inside a cylindrical tube of radius R, shown in Fig. 1, where 
i is the plasma filament, 2 is the stabilizing medium, 3 is the elec- 

trode, and 4 isthe tube. The tube consists of two halves between which 
is a cylindrical electrode, of inside radius P,, with round ends. The 
length of the electrode is considerably greater than R. The potentials 
of the tube and the plasma are both zero, while the potential of the 
electrode is Up. The axisymmetric position of the plasma filament is 
stabilized because of the rotation of the plasma and the denser noncon- 
ducting medium between the plasma and the electrode. The densities 
of the plasma and the medium are Pl and Pz, respectively, and their 
velocities of rotation v for r _> R1 obey the law 

vr  = A, A = const. (1) 

The radius of the filament inside the electrode increases to a under 
the influence of the electric field. Under these conditions the field 
between the cylindrical surfaces r = a and r = R inside the electrode 
and far from its ends can be taken as cylindrically symmetrical until 
the appearance of instability. We wish to determine the least potential 

Up for which the plasma filament becomes unstable, and the minimum 
circulation 21rA necessary for its stabilization. To determine these 
quantities, we consider two cases of equilibrium of the boundary 
between the plasma and the nonconducting medium. 

Case 1. The nonconducting medium is a liquid with a surface- 
tension coefficient ~. Let the plasma surface be given a small 
perturbation which slightly alters the surface curvature r = a. The 
perturbed surface~ is described by the function r =f (z)  and satisfies 
the equation 

d~ 2 \ r ~ t / .  (2) 

The potential dis~ibution inside the nonconducting ~qnid sat~fles 
the Laplace equation 

AU(r ,  z) = 0 .  (3) 

Here Iv and Kv are Bessel functions of an imaginary argument of 
order v. 

Function (4) satisfies Eq. (3), boundary condition U(R, z) = Up, and 
also (approximately) boundary condition U(f,  z) = 0. The forces acting 
per unit area of the plasma surface are the electric force Fe, the 
surface-tension force FO, and the static pressure differential between 
the liquid and the plasma Fp. The equilibrium condition is 

Fe = Pr~ "1" Ep  . (6) 

The electrical force is determined by the equation 

8 
F e = ~ (grad ff)t 2 , (7) 

where e is the dielecttic constant of the liquid. Taking (2) into 
account, we have from (4) and (7) 

F N --.--_,g__-- e ~  8z~ln2k 7-&-- In ~ ) ,  

n = I t (ka) K 0 (kR) + I 0 (XB) K 1 (Xa). (8) 

The component of force Fp is given by 

fl 
?p  = ( p , -  p2) - -  (p~ - -  p0) - -  ~ �9 (9) 

Here P0 and Pl are the static pressures in_ '.he plasma for r = (R 1 - 0) 
and r = ( f  - 0), respectively, while P2 and 1% are the static pressures 
in the liquid for r = (R 1 + 0) and r = ( f  + 0). 
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We can determine (1% -- Pz) and (Pl -- P0) from the momentum 
equation 

d p  pv 2 
d'7 = T " (10) 

Taking (1) into account and integrating (10), we have from (9) 

F~ ~  (P~--Px) A z ] s 
213 ( W  - 1  ) "q - -  ~ .  (11) 

The surface tension is given by the equation 

F a  = f l ( c r + c ~ ) .  (12) 
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Here cl and cz are the greatest  and leasg surface curvatures. The 
curvature will be taken as positive if  the axis of the plasma f i lame,~ 
lies on its concave side. Since the change of surface curvature is 
small ,  the quanti ty fzz m a y  be neglected as small  in comparison with 
unity.  When this is taken into account we have 

t 
c~ + c, = " 7 - - - / =  " (13) 

Allowing for the fact that  @ is small  we expand ln(f /a)  in series 
and retain the first term 

in -~  a = * '  I~ = a@z~ �9 (14) 

Substituting (14) into (13) and taking (2) into account we have 

F ~  = ~ ( I / I  + & ~ ) .  (15) 

Substituting (8), (11), and (15) into (6), we obtain the linearized 
equation 

.o I t  2a~n . \ (P2-- p~) A ~ a 2 - -  (t q- 2 ~ ) - -  1 + 

+ ~ [a (t + ~p) + a Z ) : ~ p - - ~  (t + 2r  (16) 

Equation (16) is satisfied if 

8~x In 2 k 2 

s U p 2 a L n  a 2 _ ~ )  
4nln2k m = (p2--pl) A2"~'~ + a~2 (1 -La~L 2 -  . (18) 

We now introduce the dimensionless quantities 

sUp~ a~ 

u =  4~X(p~--pa),42 ' w =  (p2--P2) AZ ' 

x=a~, ,  Y =  "~I ' (~t= aLn" (19) 

When (19) is taken into account,  Eqs. (17) and (18) can be re- 
written in the form 

u =  [ ( y 2 _ t )  q - 2 w ( l - - y ) l l n  2k,  

u = - - ~ l [ y 2 + w ( t  + x 2 - 2 y ) ] l n  ~ k .  (20) 

On combining these relations we have 

t - -  2w - -  w% (t + z2) 
y2 __ 2wy = I -]- (~l 

10  - -  t - -  111332 

In -~ k . u = q ) l  1 -~- % 
(21) 

Figure 2 gives u as a function of x when w = 10"z: curve 1 is for 

= 105u, k = 0.01; curve 2 is for ~ = 104u, k = 1.05; curve 8 is for 
= 1OSu, k = 1.11 curve 4 is for u = 102u, k = 1.2; curve 5 is for u = 

= 10u, k = 1.5.  

titles y and u are then determined from Eqs. (21). Next, for given 
R and ~ we find 

R a a~ 
a = "-~-, RI = ~- ,  A 2 = (p2 - -  pl) w ' 

Uv 2 _ 4,~ (p2 - -  p,) ..t~u 

The curves and formulas obtained show that the quanti ty Up decreases 
rapidly as k and A decrease. 
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Case 2. The nonconducting medium is a gas whose demityincreases  
l inearly from pz when r = R~ (far from the. electrode) to PR when r = R. 
If the density of the nonconducting gas varies according to the law 

P 2  - -  p l  
p ~ = p I [ I + ~ ( r - - R 1 ) ] ,  ~ =  p I ( R - - R 1 )  ' (23) 

far from the electrode where the effect of the electric field can be 
neglected,  F_qs. (1) and (10) can be used to obtain the  following 
formula for Fp. 

Fp  [39aA~ [ - ~ - ] -  21' q- Rl]  (24) 
- -  213 

Substituting (8) and (24) into (6) and introducing the dimensionless 
quanti ty 

0 = 8UP2 
4~plA~a , (25) 

we obtain 

/ 2~,na R11 In2 k. (26) [--~-1 (l + 2r - -  2a (i -~ ~b) + a0 ~t - - - - - - i f -  , )  = a2 

The linearized equation (26) is satisfied if  

O- -  (Y- -  t ) - - z  ln2k, 0 = ( t - - y ) ( p l l n 2 k  . (27) 
Y 

A graph of the function 

Io (x) Ko (kx) - -  Io (kx) Ko (x) 
rp1 = z [In (x) Ko (kx) -}- Io (kx) K1 (x)] ' (28) 

introduced previously, is given in Fig. 3 for k = 1.05. 
We now give a series of quantit ies ~0~ for certain values of x: 

z = 0 0.5 i 2 5 iO 20 30 40 60 
- -  iO2(p1 = 4.88 4.94 4.87 4.85 4.78 4.50 3.34 2.95 2.40 1.65 

I t  is clear from the graphs that there is a min imum in the function 
u = u(x). This min imum corresponds to the least value of u for which 
neutral equil ibrium is possible. The value of x for which the min imu m 

occurs is given by the equation 

d g)1 2wx 
dx In t + ~ w - -  l - -  wx2, (22) 

The required quantities are calculated in the following order. 
Equation (22) is used to find x for given values of k and w. The quan- 

With asymptotic expamiom of the Bessel functions, it can be 
shown that for large values of x the  function ql can be represented 
in the form 

th (t - -  k) z 
( 2 9 )  ~1 = x 

It  is clear from (29) that ~1 "~ 0 as x "-" *~. However, for large x 
(or for large k, which is the same) the linear approximation is insuf- 

ficient, since for large k the assumption that the change of surface 
curvature is smal l  is not valid. Nevertheless, judging from the form 
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of the function ~0i, we can conclude that the cri t ical  potential  Up can 
have different values depending on the form of surface perturbation 
of the plasma fi lament for re la t ively large values of x. This difference 

from case 1 is explained by the at~enee of surfaee-temion forces 
which increase the stability of the plasma filament when it  suffers 
local  deformation. 
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For x << 1 we have 

( 2x 2 In k 
(P i~  \ ~ - -  1] -1 Ink  . (30) 

Thus it is clear that for x = 0 the function given by the second 

equation of (27) has a minimum equal to 

0 = ( y - - l )  ln3k . (31) 

From (31) and the first equation of (27) we have 

Ink = (y --  l)y -x, 0 = (y --  l)ay -3 . (32) 

The required quantities are calculated in the following order. 

For a known value of R we specify y and find k from (32). Then we 

determine a = R/k, R 1 = a/y and find Up from the formula 

up  2 (a - n~), A ( :,~p, ~o.~ 
= a \ 8Hi ] " (33) 

The potential found is the least potential for which neutral equi- 
librium is possible if  the perturbed surface is cylindrical.  This assertion 

results from the first equation of (27), which is the equilibrium condi- 

tion for a cylindrical  surface; if  we introduce the new variable 01 = aO 
and set dOi/da = 0, we obtain formula (32) and consequently formula 
(33) as well.  

Results for Up and u, calculated from formulas (32) and (33) for 

e = 1, R = 0.5 cm, Pl = 1.407 �9 10 -4 g .  cm as, and PR = 8.86-10-ag �9 

�9 cm "3, are given in Fig. 4, where the lower and upper curves for Up 
correspond, respectively, to A = 10 z and A = l0  s cm2/see. It is 

clear that as R 1 increases, Up rapidly decreases to very small values. 
The dependence of Up on gas circulation, gas density, and other 

quantities is immedia te ly  apparent from formula (33). Formula (33) 
shows that as A decreases (i.e., the rotation velocity of the gas and the 
tube radius decrease), the stabilizing effect of rotary motion on the 

plasma fi lament decreases, with other conditions remaining the same. 

The graphs show that as fi lament radius R 1 decreases, the stabilizing 

effect of the gas rapidly increases, i .e. ,  Up increases sharply. This is 
associated with the increase of gas velocity for a decrease of radius 

in accordance with (1). In actual cases of vortex stabil ization of a 

plasma fi lament the gas velocity close to the axis decreases due to 

the gas viscosity. Thus, for small  R 1 the value of Up must be less than 
that given by the formulas quoted above. Moreover, as a result of 

friction, the gas velocity close to the electrode wall decreases and is 

zero at the wall itself. Accordingly, the stabilizing effect of the gas 
and the value of Up should be very much decreased if the plasma fila- 

ment is close to the wall�9 Formulas which take these characteristics 

into account can be obtained in the same way if the law governing the 
change of gas veloci ty over the channel radius is given. 

Plasma breakdown. In continuing the analogy with the results of [1], 
we can expect the following behavior of the plasma fi lament after the 
onset of instability. The distance between the electrode and the fi la- 

ment decreases as the result of surface deformation of the latter.  This 
leads to a further increase of the electr ic-f ie ld  strength in the  deforma- 
tion zone, and this gives rise to progressive development of instabili ty 

until  the plasma forms a circuit  with the electrode. This phenomenon 
can be called plasma breakdown, as distinct from the normal avalanche 

or streamer breakdown. If there are no other competing processes and 

if  Up is less than the normal breakdown potential U s, plasma break- 
down occurs first and there is no normal breakdown. To compare the 

quantities Up and U s we calculate  U s from Towmend's theory for 
the case in which the electrode is the cathode, and the plasma 

is the anode. 

The breakdown potential for the gap between the cylindrical  

surfaces r = a and r = R is determined by the formula 

R 

a 

Here a and y are Townsend's first and second ionization co- 

efficients. 
Allowing for the temperature dependence, we can express a as 

follows: 

M,p ( Blp 
a = " ' 7 - -  exp \ - -  ~ - F / "  (35) 

Here E is the electr ic field strength, T is the gas temperature, and 

To is the temperature for which the coefficients M 1 and B 1 are deter- 

mined experimentally.  

The following values were assumed in the calculations: p = 

= 10 N �9 em -z, T = 2500* K for the temperature of the f i lament surface, 

T R = 400~ for the gas temperature at the tube wall,  To = 300~ and 
finally a temperature variat ion according to the law 

t = s o ~ s ~ ,  s - -  T i - - T  R Ti r 
To (k - -  1~ ' So = s -~- T0' ~ = R-" 

This corresponds m a linear increase of air density over the radius. 

With the values of M 1 and B, given in [2], we have M = Mlp = 11400, 

B = Btp = 277400 for p = 10 N "cm -z. We can assume y = 10 "e for air 
[2]. By means of the symbols introduced, expression (34) can be 
reduced m the form 

k 

1 

Figure 4 gives some results for U s calculated from formula (36). 

Clearly, for small  k and A the value of Up is considerably lower than 

Us. Thus, we can expect that under these circumstances the plasma 
makes contact with the electrode before normal breakdown occurs 

due to instability. For higher gas velocit ies and larger values of k, 

Up becomes larger than Us. In this case normal e lect r ical  breakdown 
is  more probable. 

The calculations given above show that under specific conditions 
the surface instabili ty of a plasma f i lament may play an important 

part in breakdown between the plasma and a cold electrode. 
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